103 research outputs found

    A Notion of Dynamic Interface for Depth-Bounded Object-Oriented Packages

    Full text link
    Programmers using software components have to follow protocols that specify when it is legal to call particular methods with particular arguments. For example, one cannot use an iterator over a set once the set has been changed directly or through another iterator. We formalize the notion of dynamic package interfaces (DPI), which generalize state-machine interfaces for single objects, and give an algorithm to statically compute a sound abstraction of a DPI. States of a DPI represent (unbounded) sets of heap configurations and edges represent the effects of method calls on the heap. We introduce a novel heap abstract domain based on depth-bounded systems to deal with potentially unboundedly many objects and the references among them. We have implemented our algorithm and show that it is effective in computing representations of common patterns of package usage, such as relationships between viewer and label, container and iterator, and JDBC statements and cursors

    On Verifying Complex Properties using Symbolic Shape Analysis

    Get PDF
    One of the main challenges in the verification of software systems is the analysis of unbounded data structures with dynamic memory allocation, such as linked data structures and arrays. We describe Bohne, a new analysis for verifying data structures. Bohne verifies data structure operations and shows that 1) the operations preserve data structure invariants and 2) the operations satisfy their specifications expressed in terms of changes to the set of objects stored in the data structure. During the analysis, Bohne infers loop invariants in the form of disjunctions of universally quantified Boolean combinations of formulas. To synthesize loop invariants of this form, Bohne uses a combination of decision procedures for Monadic Second-Order Logic over trees, SMT-LIB decision procedures (currently CVC Lite), and an automated reasoner within the Isabelle interactive theorem prover. This architecture shows that synthesized loop invariants can serve as a useful communication mechanism between different decision procedures. Using Bohne, we have verified operations on data structures such as linked lists with iterators and back pointers, trees with and without parent pointers, two-level skip lists, array data structures, and sorted lists. We have deployed Bohne in the Hob and Jahob data structure analysis systems, enabling us to combine Bohne with analyses of data structure clients and apply it in the context of larger programs. This report describes the Bohne algorithm as well as techniques that Bohne uses to reduce the ammount of annotations and the running time of the analysis

    IST Austria Technical Report

    Get PDF
    We present a new decidable logic called TREX for expressing constraints about imperative tree data structures. In particular, TREX supports a transitive closure operator that can express reachability constraints, which often appear in data structure invariants. We show that our logic is closed under weakest precondition computation, which enables its use for automated software verification. We further show that satisfiability of formulas in TREX is decidable in NP. The low complexity makes it an attractive alternative to more expensive logics such as monadic second-order logic (MSOL) over trees, which have been traditionally used for reasoning about tree data structures

    Context-Aware Separation Logic

    Full text link
    Separation logic is often praised for its ability to closely mimic the locality of state updates when reasoning about them at the level of assertions. The prover only needs to concern themselves with the footprint of the computation at hand, i.e., the part of the state that is actually being accessed and manipulated. Modern concurrent separation logics lift this local reasoning principle from the physical state to abstract ghost state. For instance, these logics allow one to abstract the state of a fine-grained concurrent data structure by a predicate that provides a client the illusion of atomic access to the underlying state. However, these abstractions inadvertently increase the footprint of a computation: when reasoning about a local low-level state update, one needs to account for its effect on the abstraction, which encompasses a possibly unbounded portion of the low-level state. Often this gives the reasoning a global character. We present context-aware separation logic (CASL) to provide new opportunities for local reasoning in the presence of rich ghost state abstractions. CASL introduces the notion of a context of a computation, the part of the concrete state that is only affected on the abstract level. Contexts give rise to a new proof rule that allows one to reduce the footprint by the context, provided the computation preserves the context as an invariant. The context rule complements the frame rule of separation logic by enabling more local reasoning in cases where the predicate to be framed is known in advance. We instantiate our developed theory for the flow framework, which enables local reasoning about global properties of heap graphs. We then use the instantiation to obtain a fully local proof of functional correctness for a sequential binary search tree implementation that is inspired by fine-grained concurrent search structures

    Make flows small again: revisiting the flow framework

    Full text link
    We present a new flow framework for separation logic reasoning about programs that manipulate general graphs. The framework overcomes problems in earlier developments: it is based on standard fixed point theory, guarantees least flows, rules out vanishing flows, and has an easy to understand notion of footprint as needed for soundness of the frame rule. In addition, we present algorithms for automating the frame rule, which we evaluate on graph updates extracted from linearizability proofs for concurrent data structures. The evaluation demonstrates that our algorithms help to automate key aspects of these proofs that have previously relied on user guidance or heuristics

    Embedding Hindsight Reasoning in Separation Logic

    Full text link
    Proving linearizability of concurrent data structures remains a key challenge for verification. We present temporal interpolation as a new proof principle to conduct such proofs using hindsight arguments within concurrent separation logic. Temporal reasoning offers an easy-to-use alternative to prophecy variables and has the advantage of structuring proofs into easy-to-discharge hypotheses. To hindsight theory, our work brings the formal rigor and proof machinery of concurrent program logics. We substantiate the usefulness of our development by verifying the linearizability of the Logical Ordering (LO-)tree and RDCSS. Both of these involve complex proof arguments due to future-dependent linearization points. The LO-tree additionally features complex structure overlays. Our proof of the LO-tree is the first formal proof of this data structure. Interestingly, our formalization revealed an unknown bug and an existing informal proof as erroneous
    • …
    corecore